
I,,, J. Hear ,MOS.S Tumfer Vol. 19. pp. 313 321. Pergamon Press 1976. Printed m Great Brltam 

TWO-FLUX SPHERICAL HARMONIC MODELLING 
OF TWO-DIMENSIONAL RADIATIVE TRANSFER 

IN FURNACES 

NEVIN SELCUK* and R. G. SIDDALL 
Department of Chemical Engineering and Fuel Technology, 

University of Sheffield, Sheffield Sl 3JD, England 

(Received 6 Ma!: 1975) 

Abstract-A new two-flux model for two-dimensional radiation fields in axisymmetrical furnaces has 
been derived from radiative transport equations based on the P, spherical harmonic approximation by 
assuming radial polynomial variation of some radiation parameters, and applying an averaging procedure. 
The new model has been applied to the prediction of the thermal behaviour of an idealised radiant cell 
of a multipass process gas heater, and the results have been compared with previous values obtained 
using the zone method of analysis, and with limited experimental data from an operating heater. 
Satisfactory predictions are obtained for gas and surface temperature distributions, and for the overall 
thermal behaviour of the cell. This predictive accuracy, coupled with their computational simplicity and 
economy compared with the zone method of analysis, suggests that two-flux models of this type should 
prove to be useful tools for approximate thermal design calculations for axi-symmetrical furnaces 

and combustors. 

NOMENCLATURE 

cross sectional area of furnace gas space; 
constant related to b, rp and cP; 
mass specific heat of gas; 
constant related to b, B and rP; 
overall thermal resistance; 
black body emissive power; 

fraction of fuel burnt at height z; 
radiation view factor; 

incident flux density of radiation at a point; 
volumetric absorption coefficient of furnace 

gas; 
height; 
flame length; 

mass flow rate; 
total number of passes in one batch of tubes; 
number of batches of tubes; 
flux density; 
radiant flux density in increasing co-ordinate 
direction; 

radiant flux density in decreasing co-ordinate 
direction; 
net calorific value of fuel; 
distance measured from axis of symmetry; 
one half of the total tube surface area per 
unit volume of furnace gas space; 
absolute temperature ; 
absolute base temperature; 
distance measured from base of enclosure. 

Greek symbols 

B> constant related to F,,, Ffp and e,; 

8, emissivity ; 

0, angular co-ordinate; 

0, Stefan-Boltzmann constant; 

$1 

term neglected in process gas energy balance; 
constant. ~- 

*Now at Middle East Technical University, Ankara, 
Turkey. 

Subscripts 

ad, at adiabatic flame temperature; 

F. fuel; 

Y? process gas ; 
G furnace gas ; 
1, number of pass; 

j, k, tube numbers; 

II, for sector between ith and jth tubes; 

m, arithmetic mean value or angular mean 
value; 

P> effective value for equivalent grey surface; 

r’, radial direction; 

R, refractory; 

t, tube surface; 

Z, axial direction; 

5, co-ordinate direction (5 = r or 2). 

1. INTRODUCTION 

THE DESIGN of industrial furnaces and combustors is 

usually based on extremely simple mathematical 
modelling of the flow, reaction and heat exchange 
within the enclosure, of which the single-gas-zone 
treatment originally proposed by Lobo and Evans [I], 
and subsequently modified by Hottel [2,3], provides 
a typical example. Such simple modelling of the 
physical situation has the advantage that the derived 

equations describing the overall thermal performance 
are algebraic in form, and, therefore, the numerical 
calculations involved in the design of a particular en- 
closure are straightforward and economical. However, 
these models are not without disadvantages; their use 
requires considerable experience and know-how in 
order to be able to allocate realistic values to certain 
dimensionless constants which occur in the working 
equations, and they do not provide a knowledge of the 
distributions of temperature and heat flux at the sink 
and refractory surfaces, which is desirable if local peak 
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values which might lead to material failure are to be 
avoided. 

In recent years considerable research etrort has been 
devoted to the development of more realistic and 
detailed models of enclosure behaviour which account 
for multidimensional variations ofproperties within the 
enclosure [4,5]. However, these procedures suffer from 
the disadvantages of being computationally complex, 
involving computing expertise and expense which arc 
several orders of magnitude greater than those associ- 
ated with the simple models. These computational 

problems. coupled with uncertainties in the turbulent 
exchange parameters on which the predictions are 

based, has meant that such models have not proved 
attractive enough to ensure their wide employment by 
industrial designers. 

What are required for design purposes at the present 

time are mathematical models which lie between the 
two extremes described above in both computational 
complexity and immediate applicability, providing a 
value for overall thermal performance together with 
predictions of the magnitudes and locations of the peak 

surface temperatures and heat Huxes. 

At the high temperatures encountered in most 
furnaces thermal radiation is the predominant mech- 

anism of heat transfer. Any successful treatment of 
enclosure performance must, therefore, be based on a 
reasonably realistic model of the radiation field. One 
of the most accurate procedures available for the 
prediction of radiative behaviour is the zone method 
of analysis r61. Its limitation lies in the excessive 

storage capacity required for its execution, even with 
relatively coarse zoning. This has led to the investi- 
gation and use of flux methods [7.8] as simpler and 
more economical, albeit less accurate, alternatives for 

the theoretical prediction of radiation. Conventional 
flux methods are based on the assumption that the 
intensity of radiation at a point is uniform but different 
within each of several smaller solid angles into which 
the total solid angle surrounding the point is sub- 
divided, with discontinuous changes in intensity with 

direction occurring at the junction of any two adjacent 
smaller solid angles. Such physically unrealistic dis- 
continuities can, however, be ;I\ aided by representing 
the angular distribution of intensity by a series of 
spherical harmonics. An approximate form of the 
equation of radiative transfer can then be obtained by 
truncating the series after a certain number of terms. 
It is known from neutron transport theory that the 
first approximation (called the P, approximation) is 
sufficiently accurate for most problems [9]. 

This paper illustrates reduction of the set of three 
radiation transport equations based on the spherical 
harmonic approximation to a two-flux form which 
makes approximate allowance for the two-dimensional 
radiative transfer for an idealised radiant cell of a 
multipass process gas heater. The basis of the reduction 
is to assume simple polynomial variation of some 
radiative quantities with radial position, and apply a 
radial averaging procedure. The new model is appli- 
cable to any axi-symmetrical system in which un- 
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formity of velocity and concentration in CLUI’~ CI-O\~ 
section normal to the axis of symmetry may rzasonahl! 
be assumed. In addition, the calculations in\ ol\ed In 
its application are simple and economical enough to 
prove appealing to the industrial design engineer. 

2. THE P, SPHERICAL HARMONIC EQCTIONS FOR \\ 
&XI-SYMMETRICAL RADIATIOR f:IEI.D 

The idea of expressing the angular variation of 

radiative intensity at a point as a serlcs of spherical 
harmonics has been developed and utiliscd extensively 
in the fields of astrophysics and neutron transport 
theory [9]. By using the P, approximation (in which 
the series is truncated after the first four terms) and 
the equation of radiative transfer. the axi-symmetrical 
radiation field within a grey non-scattering medium 
may be shown to be represented by the three following 
partial differential equations 

(3) 

where r and z are the radial and axial co-ordinates 

respectively, K, is the volumetric absorption coefficient 
of the medium, EG is its black body emissive power 
at the general point, G is the total incident flux density 
at the point, and y is the net radiant flux density in 
the positive co-ordinate direction denoted by the 
subscript. 

The radiant flux densities in the positive and negative 

co-ordinate directions are simply related to C; and (/ 

where q+ and q- are flux densities in the positive and 
negative co-ordinate directions denoted by the sub- 
script. 

3. REDUCTION OF THE RADIATION MODEL 

TO TWO-FLUX FORM 

The general physical situation to be considered is 

that of a cylindrical enclosure containing a grey non- 
scattering medium in which combustion is taking place. 
and which is exchanging radiative energy with sur- 
rounding surfaces. In many industrial enclosures the 
curved bounding walls are composed of a mixture of 
refractory and sink surfaces. The most convenient 
method of treating the radiative exchange between the 
enclosed medium and such bounding surfaces is to 
imagine that the actual walls are replaced by an 
equivalent grey surface, whose emissivity and emissive 
power depend upon the emissivities and disposition of 
the various portions. Such an imaginary bounding 
grey surface will be assumed for the enclosure under 
consideration. 
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3.1 Averaged form of thejux equations for the axial 
direction 

Multiplication of equations (1) and (3) by r dr df3 and 
integration over the circular cross section of the en- 
closure within the grey surface at height z gives 

dq, 
z = Kz(4J%-- G) -t [(qL,lm (6) 

dG 
- = -3K,< 
dz 

(7) 

where [(q,),=,,],,, is the average net radial flux density 
to the grey surface defined by 

kr)r=v,,]m = ; [‘;‘= (q,)_dB 
,, 0 

(8) 

and where the bar over any quantity denotes its area 

weighted mean value over the cross section. For 

example, qL =L r=rp 

s s 

0=2n 

nrz r=O 
q,rdrdt? (9) 

n=o 

where 6 is an angular co-ordinate (Fig. l), and rP is the 
radius of the grey cylindrical surface. 

3.2 Idealised model of the radiant cell of a process gas 
heater 

Equations (6) and (7) are applicable to any cylindrical 
enclosure. However, to illustrate the use of radial flux 
equation (2) for the evaluation of the flux density of 
radiation at the grey surface it is necessary to consider 
a particular enclosure. The example chosen is an 
idealised mode1 of the radiant cell of a multipass 

process gas heater as shown in Fig. 1. Burners located 

at the bottom of the cell introduce the gas and air which 
burn and exchange radiative energy with the bounding 

refractory backed tubes carrying the process fluid, 
before exiting at the top. The tubes are arranged 
vertically along the sidewalls in N batches of n passes, 

the fluid being assumed to enter and leave each batch 
at the top of the cell in question, for which both N 

and n are even numbers. To simplify the theoretical 
treatment the tube arrangement is assumed to be as 
shown in Fig. 2, the figures on the tubes denoting the 
pass numbers. 

~-Process gas 

-Refractory surface 

-Tube surface 

--Equlvolent yey 
silrfoce 

FIG. 1. Schematic diagram of the 
radiant cell of a typical process gas 

heater. 

FIG. 2. Assumed tube arrangement. 

Treatment of the radiative interchange between the 

furnace gas and the refractory backed tubes is based 
on the replacement of the tube-row backwall com- 
bination by a cylindrical grey surface tangential to the 
tubes on the furnace gas side. Details of the assump- 

tions utilised in the imaginary grey surface treatment 
can be found elsewhere [lo]. The expressions resulting 
from that treatment are introduced as required in the 
following sections. 

3.3 Determination of radiantflux densities at the grey 
surface for the radiant cell 

Equation (6) cannot be used for calculation purposes 

until the radiant flux densities at the grey surface have 
been expressed in terms of some other radiation 
parameters. This can be achieved by considering the 

variation of G in any cross section. 
Due to the variation in tube surface temperature 

from tube to tube the flux densities of the radiation 
arriving at and leaving the grey surface will vary with 
angular position 0 at any height. However, because of 

the assumed tube arrangement (Fig. 2), it is only 
necessary to consider a portion of the grey surface 
between (2n+ 1) adjacent tubes, which includes 2n 
spaces between tubes, as the variation of the radiant 

flux density with 0 will be repeated regularly for each 
group of2n spaces. In Fig. 2 the flux density of radiation 
incident upon the grey surface between tubes i and j is 

denoted by [(qZ)ij]r=r,,, and the corresponding leaving 

flux density by [(qr)ij]~=,,. In practice both these 
quantities will vary continuously with f3 over the space 
between the two tubes but to simplify subsequent 
theoretical treatment it is assumed that there is no 
variation of any quantity with 0 in any small sector of 
the grey surface circle bounded by the radii from the 
furnace axis to the axes of a pair of adjacent tubes. 
Angular variation of the quantity under consideration 
is then allowed for approximately by a discontinuous 
change in the quantity in moving from any sector to 
an adjacent sector. 

Values for the radiant flux densities at the grey sur- 
face can be found by considering the boundary con- 
ditions governing the variation of G in any cross 

section : 
(a) For an even number of tube batches, each ij gap 
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will be diametrically opposite to another ij gap, and 
hence (G)ij will be distributed symmetrically about the 
furnace axis. 

(b) The radiant boundary condition for the portion 

of the grey surface between the ith and jth tubes can 
be expressed in terms of the arriving and leaving flux 
densities as [(qt)ij]r=r,, = cp(Ep)ij+(l -Ep)[(yT)ij]r=r,, (lo) 
where cp is the effective emissivity of the equivalent 

grey surface, and (Ep)ij is the effective black body 
emissive power of the portion of the grey surface, which 
is related as follows to the emissive power of the tube 

surfaces CEp)i, = +[CEt)i + CEr)j]. (11) 
If (G)ij is assumed to vary parabolically with r, and the 
parabola is made to satisfy the condition of axial sym- 

metry and the condition at the grey surface, an ex- 
pression results containing only one undetermined 
coefficient. The value of this coefficient can be found 

in terms of the average total flux density of incident 
radiation and the emissive power of tube surfaces by 
averaging the parabolic expression for (G),j over the 
cross section. By utilising the completely specified 
parabolic form for (G),, the net and incident radial 
radiant flux densities at the grey surface are finally 

determined from equations (2), and (2) (4) and (5) with 
< = r respectively, and take the forms 

[(Yl)l=,,lm = % [G-4mnl 

[(4:hjJr=r,, = 2 [BG-2(Ef)m] 
P 

(12) 

+ 1 _ 2Cr,(B-4) L BE+ 1 (Ep)ij (13) 
where (14) 

Constants B and C are related to the radiative proper- 
ties and the cross sectional radius by the formulae 

2 !-- ! 1’ 

BE I+4-5.-.- 
3K,r, 

(15) 

4 
c= 

3K r2(B-:). (1 I) 
(16) 

3.4 Radiant energy balances in two-jluxform 

Averaging equations (4) and (5) with 5 = z over the 
cross section and rearranging gives 

qz = 4:-4; (17) 

G = 2(q: +y;). (18) 

Substituting from equations (12), (17) and (18) into 
equations (6) and (7) and solving simultaneously for 
the differential terms produces two ordinary differential 
equations in the averaged flux densities for the I? 
direction 

s= 2K,.Ec+2C(EI),-($K,+C)q: 

-(%K,+C)yi- (19) 

These equations are the mathematical representation 
of the new two-flux model for the radiant cell, the two 
fluxes involved being (1: and L,:. For other types ol 
axi-symmetrical furnace the form taken by the equa- 
tions will depend upon the relationship between the 

emissive powers of the equivalent grey surface and the 
sink surfaces. 

4. ADDITIONAL EQUATIONS REQUIRED 
FOR PREDICTION OF THE THERMAL BEHAWOUR 

OF A RADIANT CELL 

To test the accuracy of the new two-flux radiation 
model it is necessary to carry out numerical calculations 
for a radiant cell with specified input and boundary 
conditions. Before this is possible, several additional 
equations are required. These are given below. 

4.1 Tofu1 energy balance on the,firrnace gas 

An additional equation containing E, can be found 
by carrying out a total energy balance on the com- 
bustion products (furnace gas) in any cross section 
normal to the cylinder axis. To simplify the form taken 
by this equation it will be assumed that the velocity 
and chemical species concentrations are uniform over 

the cross section, that the effects of conductive and 
convective heat transfer are negligible, and that the 
specific heat of the furnace gas is independent of 
position and temperature. After utilising these assump- 
tions the energy balance can be written as 

where qc is the cross sectional average flux density of 
sensible energy in the furnace gas, tiF is the initial mass 
flow rate of fuel, A, is the cross sectional area of the 
enclosure within the grey surface, Q is the net calorific 
value of the fuel, and ,j is the fraction of fuel burnt at 
height z. (1e can be related to the cross sectional 

average absolute temperature of the furnace gas TG as 

(22) 

where tic is the mass flow rate of the furnace gas, cG 
its mass specific heat and Th some base temperature 
for measuring quantities of sensible heat. By utilising 
equations (6) and (18) equation (21) can be rewritten 
in the form required for calculation purposes 

2 = 2K,(;5 + q: - 2&) + F ; Q. (23) 
G z 

4.2 Total energy balancejv the process gas on its ith 
pass 

Assuming that within the process gas tubes heat is 
transferred from the inner wall to the fluid by con- 
vection alone, and that the specific heat of the process 
gas is independent of position and temperature, the 
total energy balance for the process gas on its ith pass 



Two-flux spherical harmonic modelling in furnaces 317 

takes the form 

(- l)‘d”r_ [(4g)i] 

= z r<[(4:)ij]~=l,+[(9:)iklr=r,-2(E*)i) 

P 

+$[tE,),+ CEc)k-2(Ec)i]} 

where (qs)i is the flux density of sensible energy in the 
process gas in the direction of flow on its ith pass 
(summed for all N ith passes) based on AG, S is half 
the total tube surface area per unit volume of furnace 

gas space, and (E,)i is the black body emissive power 
of the outer surface of the ith tube. Ed and /I are 
related to the emissivity of the tube surfaces (at) and 
the radiation view factors by the expressions 

4F,,( 1 - F&r 

ap= [1-(1-E,)(1-2F,P+2F,,FP,)] 
(25) 

B= 

where FfP is the view factor for half the surface of a 
tube to the grey surface, and FPf is the view factor for 

the grey surface to half the surface of a tube. 
(qs)i is related to the absolute temperature of the 

process gas on its ith pass [( Tg)i] by the relationship 

(Yg)i = zCg[ir,)i-G] (27) 

where riz, is the total mass flow rate of the process gas 
and cg its mass specific heat. 

The working form of the total energy balance on the 
process gas is obtained by substituting from equation 
(13) into equation (24). After neglecting certain terms 
on the right hand side of the equation (Appendix A) the 
balance reduces to the simplified form 

(-f)‘$[(q,)i] =$[C+Z_2(Er)i]. (28) 

4.3 Energy balance on a tube wall 
The final equation necessary for numerical solution 

on the radiant cell is provided by an energy balance 
on the wall of the ith tube, which relates the process 
gas, furnace gas and outer tube surface temperatures. 

(T)i-(T,)i C 7 : 

D 
= s [qz fqz -2(E,)i] (29) 

where (Et); = a(‘K)! (30) 

and where u is the Stefan-Boltzmann constant, and D 
is the overall thermal resistance between the outer 
surface of a tube and the process fluid based on unit 
area of the outer surface of the tube. 

4.4 Emissive power of the refractory surface 
The average emissive power of the sidewall refractory 

at any height (ER), is given by the relationship 

where the average incident flux density on the grey 

surface can be obtained from equation (13) as 

&&+)r=,,]m = ?(y;+c)+ jl-FJ(E&. (32) 
D 

5. NUMERICAL SOLUTION FOR A PARTICULAR 
RADIANT CELL 

In order to obtain detailed radiative heat flux and 
temperature distributions for a particular radiant cell 
it is necessary to solve simultaneous equations (19) 

(20), (22) (23) and (27))(30) with i = 1, 2, . . , n. These 
equations involve the unknown variables g, z, qG, 
TG, E,,f and (q,)i, (Tg)i, (T,)i, (E,)i with i = 1. 2, , n, 
and before complete solution is possible the following 
additional information must be provided: 

(i) A relationship between TG and E,. For the 
idealised radiant cell considered the relationship is 

taken to be (Appendix B) 

7;G = (E,/o)“. (33) 

(ii) The cell and tube geometries and material 
properties, and initial conditions for the furnace gas, 

air, and process gas. The values used are based on an 
operating heater. 

(iii) Radiative boundary conditions at the top and 
bottom of the radiant cell. The end walls are assumed 
to be radiatively adiabatic, with 

z = 4; at z = 0 and z = L. (34) 

(iv) The combustion pattern. The pattern assumed is 
the simple polynomial form suggested by Roesler [ 1 l] 

f=l for LJ Q z < L. 1 

where L, is the flame length, defined as the distance 
from the burners at which combustion is complete. 

The computational problem involves the solution of 
a number of simultaneous non-linear differential equa- 
tions. The numerical solution procedure adopted is 
based on an iterative scheme coupled with combined 
two and three-point predictor-corrector methods for 
the numerical integration [12]. With 25 space incre- 
ments in the vertical direction for numerical integration, 
convergence of the solution to the order of 10m5 W/m’ 
in q; at the heater inlet was obtained in about 30 
iterative cycles, taking approximately 50 s of computing 
time on an ICL 1907 computer. 

In order to provide numerical values of radiative 
heat flux and temperature as a basis of comparison for 
the values predicted using the two-flux model, all cal- 
culations have been repeated using the zone method of 
analysis for modelling the radiation field [ 131. 

(E ) = [2F,~(1 -F~~)+E~(1-2Fp,+2F,,Fp,)] [(q:)r=r,lm+2EtFpt(Et), 
Rm 

[1-(1-~,)(1--2F,~+2F,,F,,)] 
(31) 

HMT Vol. 19. No. 3_~ 
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6. RESULTS OF CALCULATIONS AND DlSCl!SSIOh 

The thermal behaviour of an idealised physical 
model of the radiant cell of a process gas heater has 
been predicted by the two-flux form of P, spherical 
harmonic approximation and the zone method of 

analysis. using the same input data for the computer 
programs of both methods. To demonstrate the effect 
of flame length on the predicted radiative behaviour 

of the heater, all calculations havjc been repeated with 
Lf = 0, and L, = 0,48L, the former corresponding to 
complete combustion at the burners, and the latter to 
the flame length observed in the heater under normal 
operating conditions. 

For generality, all quantities are presented in dimen- 

sionless form, temperatures being made dimensionless 
by dividing them by the adiabatic flame temperature 
of the furnace gas (neglecting any dissociation) (&). 05 

and radiative flux densities being made dimensionless 

by dividing them by the black body emissive power f 

of the furnace gas at its adiabatic flame temperature 

(~‘,<I ). 

6.1 Comparison of’tirnuce qus tempcncture distributions 

Figures 3 and 4 illustrate the comparison of predicted 
furnace gas temperature distributions for L, = 0 and 
L, = 0.48L respectively. It can be seen that the dis- 
tributions follow the physically correct trends for both 
flame lengths, and that the furnace gas temperatures 
evaluated by the spherical harmonic approximation 
are in excellent agreement with those obtained by the 
zone method of analysis. 

I I 
0'0 

I I 
02 04 06 08 

z/i 
FIG. 3. Comparison of dimensionless furnace gas 

temperature distributions for L, = 0. 

Comparison of Figs. 3 and 4 shows that the mag- 

nitude of the differences between the temperatures 
predicted using the two radiation models appear to be 
virtually independent of the heat release pattern. 

The predicted furnace gas exit temperature for 
L, = 0.48L is 0.609 for both the two-flux and the zone 
methods, which differs by approximately 0.3 per cent 
from the value measured on the operating heater 
(0.61 I). 

6.2 Comparison of predicted net rudiunt,flux densit) 

distributions 

Distributions of dimensionless arithmetic average 
net radiant flux densities to the surfaces of the tubes 
at any height for L, = 0 and L, = 0.48L are shown 
in Figs. 5 and 6 respectively. Although the distributions 

follow common trends for both flame lengths, it can 
be seen there are distinct differences between the 
distributions predicted by the new method and the zone 
method, the flux densities being underpredicted in the 
regions of high furnace gas temperature, and over- 
predicted in the regions of low temperature. This can 
be attributed to the different bases of formulation of 
the flux density of radiation incident on the grey 
surface. which depends upon the flux densities of axial 
radiation in the immediately adjacent furnace gas at 
any height for the spherical harmonics method, and 
upon the radiation arriving from all other zones for 
the zone method of analysis. 

FIG. 4. Comparison of dimensionless furnace 
gas temperature distributions for L, = 0.4% 

6.3 Compurison oftubesurfuce temperature distributions 

Figure 7 compares the predicted distributions of the 
outer surface temperature of a tube containing the 
process fluid on its sixth and final pass for I,, = 0.48L. 
This is the pass for which maximum temperatures 
occur and for which, therefore, tube material failure 
due to local overheating is most likely. The predicted 
distributions and the peak tube surface temperatures 
can be seen to be in close agreement. Comparison of 
Figs. 6 and 7 shows that the maximum tube surface 
temperature takes place at approximately the same 
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5. Comparison of dimensionless average net flux den- 
sities to the tube surfaces for I,, = 0. 

006- 

ooz- 
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FIG. 6. Comparison of dimensionless average net flux den- 
sities to the tube surfaces for L, = 048L. 

FIG. 8. Comparison of dimensionless sidewall 
refractory temperatures for L, = 0. 

- Spherical harmomc 
- Zone 

040- 

h% 
\ 

e!+ 

k 

030; 
I I I I 

02 04 06 08 

Z/L 

height as the maximum in the net flux density of radi- 
ation (as the two are closely related) for the spherical 
harmonic approximation but not for the zone method 
of analysis. This may be due to coarse zoning of the 
heater, which prevents the zone method from predicting 
the exact location and the magnitude of the maximum 
temperature. 

6.4 Comparison of process gas temperatures 

As a consequence of the high ratio of the product 
of mass flow rate and specific heat for the process gas 
to that for the furnace gas (rit,c,/tiGcG = 7.46) for the 
heater considered, the variation of the process gas tem- 
perature along the heater in any pass is relatively small. 
Therefore, instead of attempting to present distribu- 
tions in graphical form, a few typical values of interest 
will be given. The exit process gas temperature 

IO 

- SpherIcal harmonic 

- Zone 

09 

08 1 
05 

t 

044 
Z/L 

- Sphewal harmonic 
- Zone 

I I I I 
02 04 06 06 10 

Z/L 

FIG. 7. Comparison of dimensionless tube surface tempera- FIG. 9. Comparison of dimensionless sidewall 
tures for i = 6 and I., = 0.48L. refractory temperatures for L, = 0.48L. 
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predicted to be 0.359 for both the spherical harmonics 
and the zone methods, which is identical with the value 
of 0.359 which was measured on the heater. 

It is also found that the predicted arithmetic average 
process gas temperature, taken over all six passes at 

any height, varies negligibly with position over the 
whole height of the heater, being 0,333 for the spherical 
harmonics method, as compared with 0,332 for the 

zone method. This means that, on average, the furnace 
gas is losing heat to a sink at essentially constant 
temperature during its passage through the heater. 

6.5 Comparison of temperature distrihutions~br 

rqfractorq 

Average sidewall refractory temperature distribu- 
tions for L, = 0 and L, = 0.48L are illustrated in 
Figs. 8 and 9 respectively. It can be seen that the 

refractory temperature distributions display the same 
patterns as the net flux density distributions for both 
flame lengths (Figs. 5 and 6). This is to be expected, 
as the emissive power of the radiatively adiabatic 

refractory wall depends upon the flux density of in- 
cident radiation, which in turn determines the net flux 
to the refractory backed tubes. 

7. CONCLUSIONS 

A new two-flux treatment of the two-dimensional 
radiative transfer in axi-symmetrical enclosures has 

been derived from equations based on the P, spherical 
harmonic approximation, and applied to the investi- 
gation of the thermal behaviour of an idealised model 
of the radiant cell of a multipass process gas heater. 
Comparison of the results of the treatment with zone 
method calculations and some experimentally deter- 

mined values has demonstrated that its predictions of 
temperaturedistributions and overall thermal perform- 
ance are of acceptable accuracy. As a result of this 

predictive accuracy. coupled with its computational 
simplicity and economy relative to the zone method of 
analysis, the two-flux model should prove useful to 

design engineers for prediction of the thermal be- 
haviour of axi-symmetrical furnaces and combustors 
in which cross-sectional uniformity of velocity and 
species concentrations may reasonably be assumed. 
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APPENDIX A 

Omission oj’Term.s in Procw.~ Gtrs Enwg~’ Buhnw 

Substitution from equations (I 1) and (13) into equation 
(24) leads to the following balance equation for the process 
gas on its ith pass 

(-lii;;[iU,ii] = 2~[ql’+q--?(E,),](l+d,) (A.l) II 

where 

4= 

i (A.3 

In the working equations used in the calculations ci, is 
neglected compared with 1. At the conclusion of calculations, 
the predicted temperatures were used to estimate the value 
of 4. Its maximum order of magnitude was found to be 
-0.01, and it was therefore concluded that neglect of r,+~ 
would not lead to any substantial errors in the predicted 
temperatures and heat fluxes. 

APPENDIX B 

Replucemerlr of TG by (E, ci): 

The average furnace gas temperature at any height may 
be defined by the relationship 

9 rr=r. ri,=2n , .,=)_,, 
;fc,=L ’ 

7rr: ,=o J J Tcrdrdd = -G (TG),rdr. (B.l) 
I, = 0 rp ,,=o 

If peripheral variation of furnace gas temperature around 
any circle of radius r is now neglected. (I&,, may be 
expressed in terms of (EG)m as 

(TG)m = [(&L~ol’ (B-3 

For the two-Hux form of Pi spherical harmonic approxi- 
mation (EG),,, takes the following form 

(8.3) 

where 
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Substituting from equations (8.2) and (B.3) into equation The assumption in the calculations that TG is equal to (&/o)* 

(B.l) and performing the integration, followed by binomial is therefore justifiable if &[($I&) - 11’ and the subsequent 

expansion gives terms in the expansion small compared with unity. Use of 
the predicted temperatures showed that the maximum order 

(B.4) of magnitude of &[($/I?,) - 13* occurred at the heater 
entrance and was less than lo- , and it was therefore con- 
rluded that its neglect would lead to insignificant errors. 

MODELISATION A DEUX FLUX DU TRANSFERT BIDIMENSIONNEL PAR 
RAYONNEMENT DANS LES FOURS A L’AIDE DES HARMONIQUES SPHERIQUES 

Rksum&Un nouveau modtle a deux flux pour les champs de rayonnement bidimensionnels dans les fours 

axisymetriques a eteobtenu apartir des equations de transfert du rayonnement, bask sur I’approximation 

PI des harmoniques spheriques, en supposant une variation radiale polynomiale de quelques paramttres 

de rayonnement et en effectuant une moyenne. Le nouveau modele a et& applique a la prevision du 

comportement thermique dune cellule de rayonnement idtale de rtchauffeur de gaz a plusieurs passages. 

Les rbultats ont et6 compares avec les valeurs obtenues anttrieurement soit par la mtthode des zones, 

soit par des mesures limit& sur un r&chauffeur en fonctionnement. On a obtenu des previsions satisfaisantes 
pour les distributions de temperature dans le gaz et sur la paroi, ainsi que pour le comportement thermique 
global de la cellule. Cet accord, joint a la simplicite et a I’economie des calculs par rapport g la methode 
des zones, suggtre que les modeles a deux flux de ce type devraient s’averer utiles pour approcher les 

calculs thermiques dans les projets de fours et de foyers axisymetriques. 

EIN ZWEIFLUSS-KUGEL-HARMONISCHES MODELL DES ZWEIDIMENSIONALEN 
STRAHLUNGSAUSTAUSCHES IN GFEN 

Zusammenfassung-Ein neues Zweiflussmodell fur zweidimensionale Strahlungsfelder in axsymmetrischen 

ofen wurde hergeleitet aus Gleichungen des Strahlungstransportes die auf der PI kugelharmonischen 
Naherung beruhen. Dazu wurde eine Radial-Polynom-Variation einiger Strahlungsparameter 
angenommen und ein Mittelungsverfahren angewandt. Das neue Model1 wurde angewandt zur 
Bestimmung des thermischen Verhaltens einer idealisierten strahlenden Zelle eines Multipass- 
Prozessgasheizers. Die Ergebnisse wurden mit friiher erhaltenen Werten verglichen, die auf der 
Zonenanalysis-Methode beruhen und mit einer geringen Zahl experimenteller Werte aus einem 
betriebenen Heizer. Zufriedenstellende Aussagen ergaben sich fur die GasoberflLchen-Temperatur- 
verteilungen und fur das thermische Gesamtverhalten der Zelle. Die Voraussagegenauigkeit zusammen 
mit der rechnerischen Einfachheit im Vergleich zur Zonenanalysis-Methode zeigt, dass das hier benutzte 
Zweiflussmodell fur thermische Auslegungsberechnungen von axsymmetrischen Gfen und Brennern 

niitzlich ist. 

MO~EJIRPOBAHRE ABYMEPHOI-0 JIYYMCTOTO IIEPEHOCA B TIEYAX 
C IIOMOIIJbIO C@EPMHECKMX I-APMOHMK 

hHoTaukuI - Ha OCHOBaHRn an”pOKCnMauun C@pnYeCKnMn rapMOHHKaMH P, C y’reTOM pannaJtb- 

HOrO nOJtAHOMWa~bHOr0 113MeHeHna HeKOTOpblX napaMeTpOB H3JtyYeHna H C nOMOmbK) yCpeAHeHAa 

H3 ypaBHeHni% JIyWCTOrO nepeHOCa BblBeneHa AByXnOTOKOBaa MOneJtb !Wtn JlByMepHblX nOJtefi 

n3ny9enun B 0cecnMMerpri~ttbtx neyax. Hosafl Monenb ncnonb3oaanacb .nna pacyera rennoaoro 
pewtahla wneanu3ripoBaHHofi IisnynatomeR sYeirKri ra309oro MnoroxonoBoro HarpeBaTenn. Pe-Jynb- 

TaTbI paNeTa CpaBHnBaJtkiCb CO 3HaSeHRRMA, nOnySeHHblMH paHee C nOMOmbM 30HaJtbHOrO MeTOAa 

aHanH3a, a TaKW(e npOBepRnnCb Ha OrpaHnYeHHOM ‘,HCJte 3KCnepnMeHTaJtbHblX AaHHblX, H3MepeHHblX 

BO BpeMa pa6orbI HarpeBaTeJta. nOJty’reHbt ynOBneTBOpRTeJtbHbIe pe3yJtbTaTbt n0 paCnpeneJteHnbJ 

TeMnepaTypbt ra3a n nOBepXHOCTn II n0 CyMMapHOMy TenJtOBOMy pewtUMy fl’ienKFi. TO’iHOCTb 

paCYeTa BMeCTe C er0 npOCTOTOfi H 3KOHOMRSHOCTbIO B CpaBHeHnH C 3OHaJtbHblM MeTOLlOM aHaJtH3a 

CBWneTenbCTBymT B nonb3y Monenek 3TOro Trina npu pacgerax OCeCUMMeTpHYHblX nerei2 11 KaMep 

cropamirr. 


